Comparison and development of cross-study normalization methods for inter-species transcriptional analysis

Author:

Feldman Sofya,Ner-Gaon HadasORCID,Treister Eran,Shay TalORCID

Abstract

Performing joint analysis of gene expression datasets from different experiments can present challenges brought on by multiple factors—differences in equipment, protocols, climate etc. “Cross-study normalization” is a general term for transformations aimed at eliminating such effects, thus making datasets more comparable. However, joint analysis of datasets from different species is rarely done, and there are no dedicated normalization methods for such inter-species analysis. In order to test the usefulness of cross-studies normalization methods for inter-species analysis, we first applied three cross-study normalization methods, EB, DWD and XPN, to RNA sequencing datasets from different species. We then developed a new approach to evaluate the performance of cross-study normalization in eliminating experimental effects, while also maintaining the biologically significant differences between species and conditions. Our results indicate that all normalization methods performed relatively well in the cross-species setting. We found XPN to be better at reducing experimental differences, and found EB to be better at preserving biological differences. Still, according to our in-silico experiments, in all methods it is not possible to enforce the preservation of the biological differences in the normalization process. In addition to the study above, in this work we propose a new dedicated cross-studies and cross-species normalization method. Our aim is to address the shortcoming mentioned above: in the normalization process, we wish to reduce the experimental differences while preserving the biological differences. We term our method as CSN, and base it on the performance evaluation criteria mentioned above. Repeating the same experiments, the CSN method obtained a better and more balanced conservation of biological differences within the datasets compared to existing methods. To summarize, we demonstrate the usefulness of cross-study normalization methods in the inter-species settings, and suggest a dedicated cross-study cross-species normalization method that will hopefully open the way to the development of improved normalization methods for the inter-species settings.

Funder

Israel Science Foundation

Council for Higher Education

Publisher

Public Library of Science (PLoS)

Reference21 articles.

1. Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data;E Glaab;PloS one,2012

2. Comparison of merging and meta-analysis as alternative approaches for integrative gene expression analysis;J Taminau;International Scholarly Research Notices,2014

3. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data;J Luo;The pharmacogenomics journal,2010

4. A reanalysis of mouse ENCODE comparative gene expression data;Y Gilad;F1000Research,2015

5. Empirical comparison of cross-platform normalization methods for gene expression data;J Rudy;BMC bioinformatics,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3