Identification of novel biomarkers to distinguish clear cell and non-clear cell renal cell carcinoma using bioinformatics and machine learning

Author:

Panwoon ChanitaORCID,Seubwai WunchanaORCID,Thanee Malinee,Sangkhamanon SakkarnORCID

Abstract

Renal cell carcinoma (RCC), accounting for 90% of all kidney cancer, is categorized into clear cell RCC (ccRCC) and non-clear cell RCC (non-ccRCC) for treatment based on the current NCCN Guidelines. Thus, the classification will be associated with therapeutic implications. This study aims to identify novel biomarkers to differentiate ccRCC from non-ccRCC using bioinformatics and machine learning. The gene expression profiles of ccRCC and non-ccRCC subtypes (including papillary RCC (pRCC) and chromophobe RCC (chRCC)), were obtained from TCGA. Differential expression genes (DEGs) were identified, and specific DEGs for ccRCC and non-ccRCC were explored using a Venn diagram. Gene Ontology and pathway enrichment analysis were performed using DAVID. The top ten expressed genes in ccRCC were then selected for machine learning analysis. Feature selection was operated to identify a minimum highly effective gene set for constructing a predictive model. The expression of best-performing gene set was validated on tissue samples from RCC patients using immunohistochemistry techniques. Subsequently, machine learning models for diagnosing RCC were developed using H-scores. There were 910, 415, and 835 genes significantly specific for DEGs in ccRCC, pRCC, and chRCC, respectively. Specific DEGs in ccRCC enriched in PD-1 signaling, immune system, and cytokine signaling in the immune system, whereas TCA cycle and respiratory, signaling by insulin receptor, and metabolism were enriched in chRCC. Feature selection based on Decision Tree Classifier revealed that the model with two genes, including NDUFA4L2 and DAT, had an accuracy of 98.89%. Supervised classification models based on H-score of NDUFA4L2, and DAT revealed that Decision Tree models showed the best performance with 82% accuracy and 0.9 AUC. NDUFA4L2 expression was associated with lymphovascular invasion, pathologic stage and pT stage in ccRCC. Using integrated bioinformatics and machine learning analysis, NDUFA4L2 and DAT were identified as novel biomarkers to differential diagnosis ccRCC from non-ccRCC.

Funder

Khon Kaen University

Publisher

Public Library of Science (PLoS)

Reference40 articles.

1. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update;B Ljungberg;Eur Urol,2019

2. Immunotherapy in Renal Cell Carcinoma: The Future Is Now;A Deleuze;Int J Mol Sci,2020

3. Unclassified renal cell carcinoma: diagnostic difficulties and treatment modalities;D Sirohi;Res Rep Urol,2018

4. Radiogenomics in Renal Cancer Management—Current Evidence and Future Prospects;M Ferro;Int J Mol Sci,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3