Multi-vehicle adaptive 3D mapping for targeted ocean sampling

Author:

Mo-Bjørkelund ToreORCID,Majaneva Sanna,Fragoso Glaucia Moreira,Johnsen Geir,Ludvigsen Martin

Abstract

Expanding spatial presentation from two-dimensional profile transects to three-dimensional ocean mapping is key for a better understanding of ocean processes. Phytoplankton distributions can be highly patchy and the accurate identification of these patches with the context, variability, and uncertainty of measurements on relevant scales is difficult to achieve. Traditional sampling methods, such as plankton nets, water samplers and in-situ vertical sensors, provide a snapshot and often miss the fine-scale horizontal and temporal variability. Here, we show how two autonomous underwater vehicles measured, adapted to, and reported real-time chlorophyll a measurements, giving insights into the spatiotemporal distribution of phytoplankton biomass and patchiness. To gain the maximum available information within their sensing scope, the vehicles moved in an adaptive fashion, looking for the regions of the highest predicted chlorophyll a concentration, the greatest uncertainty, and the least possibility of collision with other underwater vehicles and ships. The vehicles collaborated by exchanging data with each other and operators via satellite, using a common segmentation of the area to maximize information exchange over the limited bandwidth of the satellite. Importantly, the use of multiple autonomous underwater vehicles reporting real-time data combined with targeted sampling can provide better match with sampling towards understanding of plankton patchiness and ocean processes.

Funder

Norges Forskningsråd

Publisher

Public Library of Science (PLoS)

Reference58 articles.

1. Is there a decline in marine phytoplankton?;A McQuatters-Gollop;Nature,2011

2. Low KH, Dolan J, Schneider J, Elfes A. Multi-robot adaptive exploration and mapping for environmental sensing applications. PhD thesis, CMU. 2009;.

3. Fossum TO, Fragoso GM, Davies EJ, Ullgren JE, Mendes R, Johnsen G, et al. Toward adaptive robotic sampling of phytoplankton in the coastal ocean. Science Robotics. 2019;4(27). doi: 10.1126/scirobotics.aav3041 33137739

4. Kemna S. Multi-robot strategies for adaptive sampling with autonomous underwater vehicles [thesis]. University of Southern California; 2018.

5. Contrasting phytoplankton-zooplankton distributions observed through autonomous platforms, in-situ optical sensors and discrete sampling;GM Fragoso;Plos one,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3