Identification of biomarkers related to angiogenesis in myocardial ischemia-reperfusion injury and prediction of potential drugs

Author:

Zhao YaoweiORCID,Li Hongyu,Ma Xiyuan,Meng Xianghong,Tang Qiang

Abstract

Myocardial ischemia-reperfusion injury (MIRI) refers to the secondary damage to myocardial tissue that occurs when blood perfusion is rapidly restored following myocardial ischemia. This process often exacerbates the injury to myocardial fiber structure and function. The activation mechanism of angiogenesis is closely related to MIRI and plays a significant role in the occurrence and progression of ischemic injury. In this study, we utilized sequencing data from the GEO database and employed WGCNA, Mfuzz cluster analysis, and protein interaction network to identify Stat3, Rela, and Ubb as hub genes involved in MIRI-angiogenesis. Additionally, the GO and KEGG analysis of differentially expressed genes highlighted their broad participation in inflammatory responses and associated signaling pathways. Moreover, the analysis of sequencing data and hub genes revealed a notable increase in the infiltration ratio of monocytes and activated mast cells. By establishing key cell ROC curves, using independent datasets, and validating the expression of hub genes, we demonstrated their high diagnostic value. Moreover, by scrutinizing single-cell sequencing data alongside trajectory analysis, it has come to light that Stat3 and Rela exhibit predominant expression within Dendritic cells. In contrast, Ubb demonstrates expression across multiple cell types, with all three genes being expressed at distinct stages of cellular development. Lastly, leveraging the CMap database, we predicted potential small molecule compounds for the identified hub genes and validated their binding activity through molecular docking. Ultimately, our research provides valuable evidence and references for the early diagnosis and treatment of MIRI from the perspective of angiogenesis.

Funder

Scientific Research Project of Heilongjiang Administration of Traditional Chinese Medicine

Heilongjiang Provincial Postdoctoral Foundation

Publisher

Public Library of Science (PLoS)

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3