Research on strength and microscopic characteristics of lime-activated fly ash-slag solidified sludge under high temperature effect

Author:

Gong ShunmeiORCID,Feng Songbao,Wang Shiquan,Yu Lemei,Chen Yuanyuan,Xu Qiang,Niu Zhiyong

Abstract

To explore the reaction mechanism of sludge, slag, lime, and fly ash in high temperature environments, the unconfined compressive strength (UCS) test was hereby implemented to study the effect on curing age, curing temperature, slag content and fly ash content about the strength of sludge. Scanning electron microscopy (SEM) was used to observe the microscopic composition of the substance, and X-ray diffraction (XRD) was used to analyze the mineral composition at the micro level to further disclose its reinforcement mechanism. The experimental results demonstrate the difference in the strength measured by different dosage of curing agent, and results indicate that the strength of high temperature curing sample was obviously higher than that of low temperature curing sample. When the curing temperature rises, the pozzolanic reaction and hydration reaction between materials are accelerated, and a certain amount of gel products are produced, playing a precipitation and bonding role between particles. The 28 days and 90 days strengths of the sludge samples with 20% fly ash and 80% slag dosing at 40°C were 1139 KPa and 1194 KPa, which were 1.4 and 1.1 times of that of pure cement solidified sludge. At 60°C, the strength of 14 days, 28 days and 90 days were 802 KPa, 1298 KPa and 1363 KPa, which were 1.1, 1.5 and 1.3 times of that of pure cement solidified sludge. Under the influence of an alkaline environment, the silicon-aluminum grid structure was interconnected into a denser network structure, and the compressive strength of lime-activated fly ash-slag was thus continuously enhanced. Affected by the high temperature, lime-activated fly ash-slag solidified sludge could significantly improve the middle and late strength of the sample. The research showed that the new solidification material can replace partly the concrete curing agent, thereby alleviating the carbon emission and environmental pollution problems arising from cement solidified sludge.

Funder

Research on the integration of innovation and entrepreneurship education with professional education

Key Projects of Natural Science Research in Anhui Province

Key Research Institute of Humanities and Social Sciences in Sichuan Province

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3