Efficient attribute-based strong designated verifier signature scheme based on elliptic curve cryptography

Author:

Ma RuiORCID,Du LinyueORCID

Abstract

In an attribute-based strong designated verifier signature, a signer who satisfies the access structure signs the message and assigns it to a verifier who satisfies the access structure to verify it, which enables fine-grained access control for signers and verifiers. Such signatures are used in scenarios where the identity of the signer needs to be protected, or where the public verifiability of the signature is avoided and only the designated recipient can verify the validity of the signature. To address the problem that the overall overhead of the traditional attribute-based strong designated verifier signature scheme is relatively large, an efficient attribute-based strong designated verifier signature scheme based on elliptic curve cryptography is proposed, as well as a security analysis of the new scheme given in the standard model under the difficulty of the elliptic curve discrete logarithm problem (ECDLP). On the one hand, the proposed scheme is based on elliptic curve cryptography and uses scalar multiplication on elliptic curves, which is computationally lighter, instead of bilinear pairing, which has a higher computational overhead in traditional attribute-based signature schemes. This reduces the computational overhead of signing and verification in the system, improves the efficiency of the system, and makes the scheme more suitable for resource-constrained cloud end-user scenarios. On the other hand, the proposed scheme uses LSSS (Linear Secret Sharing Schemes) access structure with stronger access policy expression, which is more efficient than the "And" gate or access tree access structure, making the computational efficiency of the proposed scheme meet the needs of resource-constrained cloud end-users.

Funder

Jinhua Public Welfare Technology Application Research Project in 2022

Publisher

Public Library of Science (PLoS)

Reference59 articles.

1. Designated verifier proofs and their applications;M Jakobsson;Lecture Notes in Computer Science,1996

2. An efficient strong designated verifier signature scheme,”;S Saeednia;Lecture Notes in Computer Science,2004

3. A novel efficient pairing-free CP-ABE based on elliptic curve cryptography for IoT;S Ding;IEEE Access,2018

4. Efficient signature generation by smart cards;C. Schnor;Journal of Cryptology,1991

5. Digital signcryption or how to achieve cost (signature & encryption) << cost (signature)+ cost (encryption);Y. Zheng;Advances in Cryptology, Crypto’97, Lecture Notes in Computer Science,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3