Green synthesis and characterization of silver nanoparticles and its efficacy against Rhizoctonia solani, a fungus causing sheath blight disease in rice

Author:

Islam A. K. M. Sahfiqul,Bhuiyan Rejwan,Nihad Sheikh Arafat Islam,Akter Rumana,Khan Mohammad Ashik Iqbal,Akter Shamima,Islam Md. Rashidul,Khokon Md. Atiqur Rahman,Latif Mohammad AbdulORCID

Abstract

Rice (Oryza sativa) stands as a crucial staple food worldwide, especially in Bangladesh, where it ranks as the third-largest producer. However, intensified cultivation has made high-yielding rice varieties susceptible to various biotic stresses, notably sheath blight caused by Rhizoctonia solani, which inflicts significant yield losses annually. Traditional fungicides, though effective, pose environmental and health risks. To address this, nanotechnology emerges as a promising avenue, leveraging the antimicrobial properties of nanoparticles like silver nanoparticles (AgNPs). This study explored the green synthesis of AgNPs using Ipomoea carnea leaf extract and silver nitrate (AgNO3), and also examined their efficacy against sheath blight disease in rice. The biosynthesized AgNPs were characterized through various analytical techniques such as UV-vis spectrophotometer, X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Particle size analyzer, Zeta potential, Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscope (FESEM), Transmission Electron Microscope (TEM) for confirming their successful production and crystalline nature of nanoparticles. The results of UV-visible spectrophotometers revealed an absorption peak ranging from 421 to 434 nm, validated the synthesis of AgNPs in the solution. XRD, DLS, and TEM estimated AgNPs sizes were ~45 nm, 66.2nm, and 46.38 to 73.81 nm, respectively. SEM and FESEM demonstrated that the synthesized AgNPs were spherical in shape. In vitro assays demonstrated the significant inhibitory effects of AgNPs on mycelial growth of Rhizoctonia solani, particularly at higher concentrations and pH levels. Further greenhouse and field experiments validated the antifungal efficacy of AgNPs against sheath blight disease in rice, exhibiting comparable effectiveness to commercial fungicides. The findings highlight the potential of AgNPs as a sustainable and effective alternative for managing rice sheath blight disease, offering a safer solution amidst environmental concerns associated with conventional fungicides.

Funder

Krishi Gobeshona Foundation

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3