BACK-to-MOVE: Machine learning and computer vision model automating clinical classification of non-specific low back pain for personalised management

Author:

Hartley Thomas,Hicks Yulia,Davies Jennifer L.ORCID,Cazzola Dario,Sheeran LibaORCID

Abstract

Background Low back pain (LBP) is a major global disability contributor with profound health and socio-economic implications. The predominant form is non-specific LBP (NSLBP), lacking treatable pathology. Active physical interventions tailored to individual needs and capabilities are crucial for its management. However, the intricate nature of NSLBP and complexity of clinical classification systems necessitating extensive clinical training, hinder customised treatment access. Recent advancements in machine learning and computer vision demonstrate promise in characterising NSLBP altered movement patters through wearable sensors and optical motion capture. This study aimed to develop and evaluate a machine learning model (i.e., ’BACK-to-MOVE’) for NSLBP classification trained with expert clinical classification, spinal motion data from a standard video alongside patient-reported outcome measures (PROMs). Methods Synchronised video and three-dimensional (3D) motion data was collected during forward spinal flexion from 83 NSLBP patients. Two physiotherapists independently classified them as motor control impairment (MCI) or movement impairment (MI), with conflicts resolved by a third expert. The Convolutional Neural Networks (CNNs) architecture, HigherHRNet, was chosen for effective pose estimation from video data. The model was validated against 3D motion data (subset of 62) and trained on the freely available MS-COCO dataset for feature extraction. The Back-to-Move classifier underwent fine-tuning through feed-forward neural networks using labelled examples from the training dataset. Evaluation utilised 5-fold cross-validation to assess accuracy, specificity, sensitivity, and F1 measure. Results Pose estimation’s Mean Square Error of 0.35 degrees against 3D motion data demonstrated strong criterion validity. Back-to-Move proficiently differentiated MI and MCI classes, yielding 93.98% accuracy, 96.49% sensitivity (MI detection), 88.46% specificity (MCI detection), and an F1 measure of .957. Incorporating PROMs curtailed classifier performance (accuracy: 68.67%, sensitivity: 91.23%, specificity: 18.52%, F1: .800). Conclusion This study is the first to demonstrate automated clinical classification of NSLBP using computer vision and machine learning with standard video data, achieving accuracy comparable to expert consensus. Automated classification of NSLBP based on altered movement patters video-recorded during routine clinical examination could expedite personalised NSLBP rehabilitation management, circumventing existing healthcare constraints. This advancement holds significant promise for patients and healthcare services alike.

Funder

Wellcome Trust

Versus Arthritis

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3