Network impact of a single-time-point microbial sample

Author:

Ezra Shir,Bashan AmirORCID

Abstract

The human microbiome plays a crucial role in determining our well-being and can significantly influence human health. The individualized nature of the microbiome may reveal host-specific information about the health state of the subject. In particular, the microbiome is an ecosystem shaped by a tangled network of species-species and host-species interactions. Thus, analysis of the ecological balance of microbial communities can provide insights into these underlying interrelations. However, traditional methods for network analysis require many samples, while in practice only a single-time-point microbial sample is available in clinical screening. Recently, a method for the analysis of a single-time-point sample, which evaluates its ‘network impact’ with respect to a reference cohort, has been applied to analyze microbial samples from women with Gestational Diabetes Mellitus. Here, we introduce different variations of the network impact approach and systematically study their performance using simulated ‘samples’ fabricated via the Generalized Lotka-Volttera model of ecological dynamics. We show that the network impact of a single sample captures the effect of the interactions between the species, and thus can be applied to anomaly detection of shuffled samples, which are ‘normal’ in terms of species abundance but ‘abnormal’ in terms of species-species interrelations. In addition, we demonstrate the use of the network impact in binary and multiclass classifications, where the reference cohorts have similar abundance profiles but different species-species interactions. Individualized analysis of the human microbiome has the potential to improve diagnosis and personalized treatments.

Funder

Israel Science Foundation

German-Israeli Foundation for Scientific Research and Development

United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel

Publisher

Public Library of Science (PLoS)

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3