Microbial contamination of spittoons and germicidal effect of irradiation with krypton chloride excimer lamps (Far UV-C 222 nm)

Author:

Tanimoto HiroakiORCID,Ogawa Yoshimasa,Nambu Takayuki,Koi ToruORCID,Ohashi Hiroyuki,Okinaga Toshinori,Yamamoto Kazuyo

Abstract

Background In dentistry, instruments, appliances, and body fluids such as saliva or blood are possible sources of infection. Although conventional antiseptic procedures effectively prevent infection, spittoons cannot be sanitized between each treated patient and are usually washed only with running water. However, there is currently no fast and efficient disinfection method that can be implemented between treatments. An optically filtered krypton chloride excimer lamp using ultraviolet light (Far UV-C) in the 200–230 nm wavelength range (innocuous to humans) has been recently used as a virus- and bacteria-inactivating technology. This study aimed to identify the bioburden of a dental spittoon and examine the susceptibility of two oral Streptococcus and two Enterococci to 222-nm Far UV-C by irradiating the spittoon with 222 nm Far UV-C for 5 min before evaluating the disinfection effect. Methods Bacterial analysis and real-time polymerase-chain reaction testing was used to confirm the spittoon’s biological contamination. Bacterial susceptibility to a 222-nm Far UV-C was determined with a graded dose irradiation test. After each treatment, the spittoon was irradiated with 222-nm Far UV-C for 5 min, and the disinfecting effect was evaluated. Microbial analysis of the spittoon’s surface was performed using the Silva database. Results We found that > 97% of the microbes consisted of six bacterial phyla, whereas no viruses were found. Pseudomonas aeruginosa was frequently detected. The 1-log reduction value of two oral-derived Streptococci and two Enterococci species at 222-nm Far UV-C was 4.5–7.3 mJ/cm2. Exposure of the spittoon to 222-nm Far UV-C at 3.6–13.5 mJ/cm2 significantly decreased bacterial counts (p < 0.001). Conclusions Irradiation with 222-nm Far UV-C at 3.6–13.5 mJ/cm2 significantly eliminates bacteria in spittoons, even when they are only rinsed with water. Hence, 222-nm Far UV-C irradiation may inhibit the risk of bacterial transmission from droplets in sink surfaces.

Publisher

Public Library of Science (PLoS)

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3