PathEX: Make good choice for whole slide image extraction

Author:

Yang XindaORCID,Zhang Ranze,Yang Yuan,Zhang Yu,Chen Kai

Abstract

Background The tile-based approach has been widely used for slide-level predictions in whole slide image (WSI) analysis. However, the irregular shapes and variable dimensions of tumor regions pose challenges for the process. To address this issue, we proposed PathEX, a framework that integrates intersection over tile (IoT) and background over tile (BoT) algorithms to extract tile images around boundaries of annotated regions while excluding the blank tile images within these regions. Methods We developed PathEX, which incorporated IoT and BoT into tile extraction, for training a classification model in CAM (239 WSIs) and PAIP (40 WSIs) datasets. By adjusting the IoT and BoT parameters, we generated eight training sets and corresponding models for each dataset. The performance of PathEX was assessed on the testing set comprising 13,076 tile images from 48 WSIs of CAM dataset and 6,391 tile images from 10 WSIs of PAIP dataset. Results PathEX could extract tile images around boundaries of annotated region differently by adjusting the IoT parameter, while exclusion of blank tile images within annotated regions achieved by setting the BoT parameter. As adjusting IoT from 0.1 to 1.0, and 1—BoT from 0.0 to 0.5, we got 8 train sets. Experimentation revealed that set C demonstrates potential as the most optimal candidate. Nevertheless, a combination of IoT values ranging from 0.2 to 0.5 and 1-BoT values ranging from 0.2 to 0.5 also yielded favorable outcomes. Conclusions In this study, we proposed PathEX, a framework that integrates IoT and BoT algorithms for tile image extraction at the boundaries of annotated regions while excluding blank tiles within these regions. Researchers can conveniently set the thresholds for IoT and BoT to facilitate tile image extraction in their own studies. The insights gained from this research provide valuable guidance for tile image extraction in digital pathology applications.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Guangdong Provincial Department of Science and Technology

Guangzhou Science, Technology and Innovation Commission

Publisher

Public Library of Science (PLoS)

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3