Forest carbon sequestration on the west coast, USA: Role of species, productivity, and stockability

Author:

Chisholm Paul J.ORCID,Gray Andrew N.

Abstract

Forest ecosystems store large amounts of carbon and can be important sources, or sinks, of the atmospheric carbon dioxide that is contributing to global warming. Understanding the carbon storage potential of different forests and their response to management and disturbance events are fundamental to developing policies and scenarios to partially offset greenhouse gas emissions. Projections of live tree carbon accumulation are handled differently in different models, with inconsistent results. We developed growth-and-yield style models to predict stand-level live tree carbon density as a function of stand age in all vegetation types of the coastal Pacific region, US (California, Oregon, and Washington), from 7,523 national forest inventory plots. We incorporated site productivity and stockability within the Chapman-Richards equation and tested whether intensively managed private forests behaved differently from less managed public forests. We found that the best models incorporated stockability in the equation term controlling stand carrying capacity, and site productivity in the equation terms controlling the growth rate and shape of the curve. RMSEs ranged from 10 to 137 Mg C/ha for different vegetation types. There was not a significant effect of ownership over the standard industrial rotation length (~50 yrs) for the productive Douglas-fir/western hemlock zone, indicating that differences in stockability and productivity captured much of the variation attributed to management intensity. Our models suggest that doubling the rotation length on these intensively managed lands from 35 to 70 years would result in 2.35 times more live tree carbon stored on the landscape. These findings are at odds with some studies that have projected higher carbon densities with stand age for the same vegetation types, and have not found an increase in yields (on an annual basis) with longer rotations. We suspect that differences are primarily due to the application of yield curves developed from fully-stocked, undisturbed, single-species, “normal” stands without accounting for the substantial proportion of forests that don’t meet those assumptions. The carbon accumulation curves developed here can be applied directly in growth-and-yield style projection models, and used to validate the predictions of ecophysiological, cohort, or single-tree style models being used to project carbon futures for forests in the region. Our approach may prove useful for developing robust models in other forest types.

Funder

Oak Ridge Institute for Science and Education

Publisher

Public Library of Science (PLoS)

Reference74 articles.

1. A synthesis of current knowledge on forests and carbon storage in the United States.;DC McKinley;Ecol Appl,2011

2. A Large and Persistent Carbon Sink in the World’s Forests;YD Pan;Science,2011

3. Greenhouse gas emissions and removals from forest land, woodlands, urban trees, and harvested wood products in the United States, 1990–2020.;GM Domke;Resource Update FS–382. USDA Forest Service, Northern Research Station, Madison, WI,2022

4. Evergreen coniferous forests of the Pacific Northwest;RH Waring;Science,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3