Physical modeling of the effect of shape, blockage, and flow variability on scour in culvert outlets

Author:

Ahmed Kaywan OthmanORCID,Kavianpour Mohammad Reza,Amini Ata,Aminpour Younes

Abstract

The widespread use of culverts has prompted researchers to focus on developing precise designs to prevent their failure caused by scouring at the culvert outlet. This study employed physical modelling to investigate alternation in culvert outlets under different conditions, including variations in culvert shape, blockage, and flow discharge during steady and unsteady flow conditions. Box and circular culverts were examined with 0%, 15%, and 30% blockage rates at the culvert inlet. For unsteady flow conditions, two hydrographs were generated, each with nine distinct flow discharges, while for steady flow conditions, flow rates of up to 14 l/s and 22 l/s were used. The sediment and flow conditions were carefully selected to ensure clear water throughout the experiments. According to the study results, the scour profile exhibited more growth in the circular culvert compared to the box culvert across all cases. Furthermore, an increase in flow rate led to an increase in the scour hole dimension, and the scouring increased with a rise in hydrograph stepwise. However, when the degree of blockage was increased, a strictly proportional increase in scour depth was not observed across all cases. The results and data presented in this research can be used by other researchers in addition to being used by hydraulic designers.

Publisher

Public Library of Science (PLoS)

Reference22 articles.

1. Local scour downstream of box-culvert outlets;H Abida;Journal of irrigation and drainage engineering,1991

2. Numerical modeling of depth and location of scour at culvert outlets under unsteady flow conditions;K Othman Ahmed;Journal of Pipeline Systems Engineering and Practice,2021

3. Numerical investigation of scour characteristics downstream of blocked culverts;N Taha;Alexandria Engineering Journal,2020

4. Unified culvert scour determination;SR Abt;Journal of Hydraulic engineering,1984

5. Culvert slope effects on outlet scour;SR Abt;Journal of Hydraulic Engineering,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3