Glutathione transferase P1 is modified by palmitate

Author:

Marensi VanessaORCID,Yap Megan C.,Ji Yuhuan,Lin Cheng,Berthiaume Luc G.,Leslie Elaine M.ORCID

Abstract

Glutathione transferase P1 (GSTP1) is a multi-functional protein that protects cells from electrophiles by catalyzing their conjugation with glutathione, and contributes to the regulation of cell proliferation, apoptosis, and signalling. GSTP1, usually described as a cytosolic enzyme, can localize to other cell compartments and we have reported its strong association with the plasma membrane. In the current study, the hypothesis that GSTP1 is palmitoylated and this modification facilitates its dynamic localization and function was investigated. Palmitoylation is the reversible post-translational addition of a 16-C saturated fatty acid to proteins, most commonly on Cys residues through a thioester bond. GSTP1 in MCF7 cells was modified by palmitate, however, GSTP1 Cys to Ser mutants (individual and Cys-less) retained palmitoylation. Treatment of palmitoylated GSTP1 with 0.1 N NaOH, which cleaves ester bonds, did not remove palmitate. Purified GSTP1 was spontaneously palmitoylated in vitro and peptide sequencing revealed that Cys48 and Cys102 undergo S-palmitoylation, while Lys103 undergoes the rare N-palmitoylation. N-palmitoylation occurs via a stable NaOH-resistant amide bond. Analysis of subcellular fractions of MCF7-GSTP1 cells and a modified proximity ligation assay revealed that palmitoylated GSTP1 was present not only in the membrane fraction but also in the cytosol. GSTP1 isolated from E. coli, and MCF7 cells (grown under fatty acid free or regular conditions), associated with plasma membrane-enriched fractions and this association was not altered by palmitoyl CoA. Overall, GSTP1 is modified by palmitate, at multiple sites, including at least one non-Cys residue. These modifications could contribute to regulating the diverse functions of GSTP1.

Funder

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

Foundation for the National Institutes of Health

Alberta Cancer Foundation

Publisher

Public Library of Science (PLoS)

Reference59 articles.

1. Glutathione transferases.;JD Hayes;Annu Rev Pharmacol Toxicol,2005

2. Glutathione transferases, regulators of cellular metabolism and physiology;PG Board;Biochim Biophys Acta,2013

3. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation;WH Habig;J Biol Chem,1974

4. Genetic heterogeneity of the human glutathione transferases: a complex of gene families;P Board;Pharmacol Ther,1990

5. Glutathione S-transferases and thiol concentrations in embryonic and early fetal tissues;MT Raijmakers;Hum Reprod,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3