Image inpainting algorithm based on double curvature-driven diffusion model with P-Laplace operator

Author:

Xiao LifangORCID,Wu JianhaoORCID

Abstract

The method of partial differential equations for image inpainting achieves better repair results and is economically feasible with fast repair time. Addresses the inability of Curvature-Driven Diffusion (CDD) models to repair complex textures or edges when the input image is affected by severe noise or distortion, resulting in discontinuous repair features, blurred detail textures, and an inability to deal with the consistency of global image content, In this paper, we have the CDD model of P-Laplace operator term to image inpainting. In this method, the P-Laplace operator is firstly introduced into the diffusion term of CDD model to regulate the diffusion speed; then the improved CDD model is discretized, and the known information around the broken region is divided into two weighted average iterations to get the inpainting image; finally, the final inpainting image is obtained by weighted averaging the two image inpainting images according to the distancing. Experiments show that the model restoration results in this paper are more rational in terms of texture structure and outperform other models in terms of visualization and objective data. Comparing the inpainting images with 150, 1000 and 100 iterations respectively, Total Variation(TV) model and the CDD model inpainting algorithm always has inpainting traces in details, and TV model can’t meet the visual connectivity, but the algorithm in this paper can remove the inpainting traces well, TV model and the CDD model inpainting algorithm always have inpainting traces in details, and TV model can’t meet the visual connectivity, but the algorithm in this paper can remove the inpainting traces well. Of the images used for testing, the highest PSNR reached 38.7982, SSIM reached 0.9407, and FSIM reached 0.9781, the algorithm not only inpainting the effect and, but also has fewer iterations.

Funder

Hubei Provincial Education Department project

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3