Data modeling analysis of GFRP tubular filled concrete column based on small sample deep meta learning method

Author:

Deng Tianyi,Xue Chengqi,Zhang GengpeiORCID

Abstract

The meta-learning method proposed in this paper addresses the issue of small-sample regression in the application of engineering data analysis, which is a highly promising direction for research. By integrating traditional regression models with optimization-based data augmentation from meta-learning, the proposed deep neural network demonstrates excellent performance in optimizing glass fiber reinforced plastic (GFRP) for wrapping concrete short columns. When compared with traditional regression models, such as Support Vector Regression (SVR), Gaussian Process Regression (GPR), and Radial Basis Function Neural Networks (RBFNN), the meta-learning method proposed here performs better in modeling small data samples. The success of this approach illustrates the potential of deep learning in dealing with limited amounts of data, offering new opportunities in the field of material data analysis.

Publisher

Public Library of Science (PLoS)

Reference42 articles.

1. Failure mode prediction of reinforced concrete columns using machine learning methods;Hosein Naderpour;Engineering Structures,2021

2. Concave performance evaluation of GFRP-reinforced precast concrete tunnel lining segments;Ahmed Elbady;Tunnelling and Underground Space Technology,2024

3. Seismic column-to-footing connections reinforced with steel/GFRP bars and GFRP spirals;D.Q. Tran;Engineering Structures,2024

4. Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach;Jesika Rahman;Engineering Structures,2021

5. In Ho Cho, Machine learning based prediction model for thermal conductivity of concrete;Yogiraj Sargam;Journal of Building Engineering,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3