Molecular identification of Hymenopteran insects collected by using Malaise traps from Hazarganji Chiltan National Park Quetta, Pakistan

Author:

Hussain Abid,Kakar Asmatullah,Naseem Mahrukh,Kamran Kashif,Ullah Zafar,Shehla Shehla,Obaid Muhammad KashifORCID,Ahmed Nazeer,Khan Qaiser,Liaqat IramORCID

Abstract

The order Hymenoptera holds great significance for humans, particularly in tropical and subtropical regions, due to its role as a pollinator of wild and cultivated flowering plants, parasites of destructive insects and honey producers. Despite this importance, limited attention has been given to the genetic diversity and molecular identification of Hymenopteran insects in most protected areas. This study provides insights into the first DNA barcode of Hymenopteran insects collected from Hazarganji Chiltan National Park (HCNP) and contributes to the global reference library of DNA barcodes. A total of 784 insect specimens were collected using Malaise traps, out of which 538 (68.62%) specimens were morphologically identified as Hymenopteran insects. The highest abundance of species of Hymenoptera (133/538, 24.72%) was observed during August and least in November (16/538, 2.97%). Genomic DNA extraction was performed individually from 90/538 (16.73%) morphologically identified specimens using the standard phenol-chloroform method, which were subjected separately to the PCR for their molecular confirmation via the amplification of cytochrome c oxidase subunit 1 (cox1) gene. The BLAST analyses of obtained sequences showed 91.64% to 100% identities with related sequences and clustered phylogenetically with their corresponding sequences that were reported from Australia, Bulgaria, Canada, Finland, Germany, India, Israel, and Pakistan. Additionally, total of 13 barcode index numbers (BINs) were assigned by Barcode of Life Data Systems (BOLD), out of which 12 were un-unique and one was unique (BOLD: AEU1239) which was assigned for Anthidium punctatum. This indicates the potential geographical variation of Hymenopteran population in HCNP. Further comprehensive studies are needed to molecularly confirm the existing insect species in HCNP and evaluate their impacts on the environment, both as beneficial (for example, pollination, honey producers and natural enemies) and detrimental (for example, venomous stings, crop damage, and pathogens transmission).

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3