Multi-strategy modified sparrow search algorithm for hyperparameter optimization in arbitrage prediction models

Author:

Cheng ShenjieORCID,Qin PankeORCID,Lu Baoyun,Yu Jinxia,Tang Yongli,Zeng Zeliang,Tu Sensen,Qi Haoran,Ye Bo,Cai Zhongqi

Abstract

Deep learning models struggle to effectively capture data features and make accurate predictions because of the strong non-linear characteristics of arbitrage data. Therefore, to fully exploit the model performance, researchers have focused on network structure and hyperparameter selection using various swarm intelligence algorithms for optimization. Sparrow Search Algorithm (SSA), a classic heuristic method that simulates the sparrows’ foraging and anti-predatory behavior, has demonstrated excellent performance in various optimization problems. Hence, in this study, the Multi-Strategy Modified Sparrow Search Algorithm (MSMSSA) is applied to the Long Short-Term Memory (LSTM) network to construct an arbitrage spread prediction model (MSMSSA-LSTM). In the modified algorithm, the good point set theory, the proportion-adaptive strategy, and the improved location update method are introduced to further enhance the spatial exploration capability of the sparrow. The proposed model was evaluated using the real spread data of rebar and hot coil futures in the Chinese futures market. The obtained results showed that the mean absolute percentage error, root mean square error, and mean absolute error of the proposed model had decreased by a maximum of 58.5%, 65.2%, and 67.6% compared to several classical models. The model has high accuracy in predicting arbitrage spreads, which can provide some reference for investors.

Funder

Henan University Science and Technology Innovation Team Support Plan

Henan Province Key R&D and Promotion Special Project

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3