Research on local sound field intensity control technique in metasurface based on deep neural networks

Author:

Zhao Huanlong,Lv QiangORCID,Huang Zhen,Chen Wei,Hao Guoqiang

Abstract

The use of tunable metasurface technology to realize the underwater tracking function of submarines, which is one of the hotspots and difficulties in submarine design. The structure-to-sound-field metasurface design approach is a highly iterative process based on trial and error. The process is cumbersome and inefficient. Therefore, an inverse design method was proposed based on parallel deep neural networks. The method took the global and local target sound field feature information as input and the metasurface physical structure parameters as output. The deep neural network was trained using a kernel loss function based on a radial basis kernel function, which established an inverse mapping relationship between the desired sound field to the metasurface physical structure parameters. Finally, the sound field intensity modulation at a localized target range was achieved. The results indicated that within the regulated target range, this method achieved an average prediction error of less than 5 dB for 92.9% of the sample data.

Funder

The National Natural Science Foundation of China

the PetroChina Innovation Foundation

the Marine Defense Technology Innovation Center Innovation Fund

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3