METTL16 participates in haemoglobin H disease through m6A modification

Author:

Liao Yuping,Zhang Feng,Yang Fang,Huang Shijin,Su Sha,Tan Xuemei,Zhong Linlin,Deng Lingjie,Pang LihongORCID

Abstract

Background Haemoglobin H (HbH) disease is caused by a disorder of α-globin synthesis, and it results in a wide range of clinical symptoms. M6A methylation modification may be one of the mechanisms of heterogeneity. Therefore, this article explored the role of methyltransferase like 16 (METTL16) in HbH disease. Method The results of epigenetic transcriptome microarray were analysed and verified through bioinformatic methods and qRT-PCR, respectively. The overexpression or knock down of METTL16 in K562 cells was examined to determine its role in reactive oxygen species (ROS), cell cycle processes or iron overload. YTH domain family protein 3 (YTHDF3) was knocked down in K562 cells and K562 cells overexpressing METTL16 via siRNA to investigate its function. In addition, haemoglobin expression was detected through benzidine staining. qRT-PCR, WB, methylated RNA Immunoprecipitation (MeRIP) and (RNA Immunoprecipitation) RIP experiments were conducted to explore the mechanism of intermolecular interaction. Results METTL16, YTHDF3 and solute carrier family 5 member 3 (SLC5A3) mRNA and the methylation level of SLC5A3 mRNA were downregulated in HbH patients. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) mRNA expression was negatively correlated with HGB content among patients with HbH-CS disease. Overexpression of METTL16 increased ROS and intracellular iron contents in K562 cells, changed the K562 cell cycle, reduced hemin-induced haemoglobin synthesis, increased the expressions of SLC5A3 and HBG and increased SLC5A3 mRNA methylation levels. Knockdown of METTL16 reduced ROS and intracellular iron contents in K562 cells. Hemin treatment of K562 cells for more than 14 days reduced the protein expressions of METTL16 and SLC5A3 and SLC5A3 mRNA methylation levels. Knockdown of YTHDF3 rescued the intracellular iron content changes induced by the overexpression of METTL16. The RIP experiment revealed that SLC5A3 mRNA can be enriched by METTL16 antibody. Conclusion METTL16 may affect the expression of SLC5A3 by changing its m6A modification level and regulating ROS synthesis, intracellular iron and cycle of red blood cells. Moreover, METTL16 possibly affects the expression of haemoglobin through IGF2BP3, which regulates the clinical phenotype of HbH disease.

Funder

National Natural Science Foundation of China

Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University

The construction of clinical intervention protocols Guangxi key R & D program

Publisher

Public Library of Science (PLoS)

Reference56 articles.

1. The α-thalassemias;FB Piel;N Engl J Med,2014

2. Thalassaemia;AT Taher;Lancet,2018

3. Alpha-thalassaemia;CL Harteveld;Orphanet J Rare Dis,2010

4. A prospective analysis for prevalence of complications in Thai nontransfusion-dependent Hb E/β-thalassemia and α-thalassemia (Hb H disease);S Ekwattanakit;Am J Hematol,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3