Predictive modeling of lean body mass, appendicular lean mass, and appendicular skeletal muscle mass using machine learning techniques: A comprehensive analysis utilizing NHANES data and the Look AHEAD study

Author:

Olshvang DanielORCID,Harris Carl,Chellappa Rama,Santhanam PrasannaORCID

Abstract

This study addresses the pressing need for improved methods to predict lean mass in adults, and in particular lean body mass (LBM), appendicular lean mass (ALM), and appendicular skeletal muscle mass (ASMM) for the early detection and management of sarcopenia, a condition characterized by muscle loss and dysfunction. Sarcopenia presents significant health risks, especially in populations with chronic diseases like cancer and the elderly. Current assessment methods, primarily relying on Dual-energy X-ray absorptiometry (DXA) scans, lack widespread applicability, hindering timely intervention. Leveraging machine learning techniques, this research aimed to develop and validate predictive models using data from the National Health and Nutrition Examination Survey (NHANES) and the Action for Health in Diabetes (Look AHEAD) study. The models were trained on anthropometric data, demographic factors, and DXA-derived metrics to accurately estimate LBM, ALM, and ASMM normalized to weight. Results demonstrated consistent performance across various machine learning algorithms, with LassoNet, a non-linear extension of the popular LASSO method, exhibiting superior predictive accuracy. Notably, the integration of bone mineral density measurements into the models had minimal impact on predictive accuracy, suggesting potential alternatives to DXA scans for lean mass assessment in the general population. Despite the robustness of the models, limitations include the absence of outcome measures and cohorts highly vulnerable to muscle mass loss. Nonetheless, these findings hold promise for revolutionizing lean mass assessment paradigms, offering implications for chronic disease management and personalized health interventions. Future research endeavors should focus on validating these models in diverse populations and addressing clinical complexities to enhance prediction accuracy and clinical utility in managing sarcopenia.

Publisher

Public Library of Science (PLoS)

Reference58 articles.

1. Sarcopenia definition, diagnosis and treatment: Consensus is growing.;AA Sayer;Age and Ageing,2022

2. Sarcopenia and Cardiovascular Diseases.;AA Damluji;Circulation,2023

3. Sarcopenia and adverse health-related outcomes: An umbrella review of meta-analyses of observational studies;L Xia;Cancer Med,2020

4. Sarcopenia Is Associated with Mortality in Adults: A Systematic Review and Meta-Analysis;J Xu;Gerontology,2022

5. Radiologically Determined Sarcopenia Predicts Morbidity and Mortality Following Abdominal Surgery: A Systematic Review and Meta-Analysis.;K Jones;World Journal of Surgery,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3