Transfer learning from rating prediction to Top-k recommendation

Author:

Ye FanORCID,Lu Xiaobo,Li Hongwei,Chen Zhenyu

Abstract

Recommender system has made great strides in two major research fields, rating prediction and Top-k recommendation. In essence, rating prediction is a regression task, which aims to predict users scores on other items, while Top-k is a classification task selecting the items that users have the most potential to interact with. Both characterize users and items, but the optimization of parameters varies widely for their respective tasks. Inspired by the idea of transfer learning, we consider extracting the information learned from rating prediction models for serving for Top-k tasks. To this end, we propose a universal transfer model for recommender systems. The transfer model consists of two sub-components: quadruple-based Bayesian Converter (BC) and Prediction-based Multi-Layer Perceptron (PMLP). As the main part, BC is responsible for transforming the feature vectors extracted from the rating prediction model. Meanwhile, PMLP extracts the prediction ratings, constructs the prediction rating matrix, and uses multi-layer perceptron to enhance the final performance. On four benchmark datasets, we use the information extracted from the singular value decomposition plus plus (SVD++) model to demonstrate the effectiveness of BC-PMLP, comparing to classical and state-of-the-art baselines. We also conduct extra experiments to verify the utility of BC, and performance within different parameter values.

Funder

Natural Science Foundation of Anhui Province of China

Key Natural Science Fund of Department of Education of Anhui Province of China

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3