Using machine learning to predict judgments on Western visual art along content-representational and formal-perceptual attributes

Author:

Spee Blanca T. M.ORCID,Leder Helmut,Mikuni JanORCID,Scharnowski Frank,Pelowski Matthew,Steyrl DavidORCID

Abstract

Art research has long aimed to unravel the complex associations between specific attributes, such as color, complexity, and emotional expressiveness, and art judgments, including beauty, creativity, and liking. However, the fundamental distinction between attributes as inherent characteristics or features of the artwork and judgments as subjective evaluations remains an exciting topic. This paper reviews the literature of the last half century, to identify key attributes, and employs machine learning, specifically Gradient Boosted Decision Trees (GBDT), to predict 13 art judgments along 17 attributes. Ratings from 78 art novice participants were collected for 54 Western artworks. Our GBDT models successfully predicted 13 judgments significantly. Notably, judged creativity and disturbing/irritating judgments showed the highest predictability, with the models explaining 31% and 32% of the variance, respectively. The attributes emotional expressiveness, valence, symbolism, as well as complexity emerged as consistent and significant contributors to the models’ performance. Content-representational attributes played a more prominent role than formal-perceptual attributes. Moreover, we found in some cases non-linear relationships between attributes and judgments with sudden inclines or declines around medium levels of the rating scales. By uncovering these underlying patterns and dynamics in art judgment behavior, our research provides valuable insights to advance the understanding of aesthetic experiences considering visual art, inform cultural practices, and inspire future research in the field of art appreciation.

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3