Abstract
The diagnosis of breast cancer through MicroWave Imaging (MWI) technology has been extensively researched over the past few decades. However, continuous improvements to systems are needed to achieve clinical viability. To this end, the numerical models employed in simulation studies need to be diversified, anatomically accurate, and also representative of the cases in clinical settings. Hence, we have created the first open-access repository of 3D anatomically accurate numerical models of the breast, derived from 3.0T Magnetic Resonance Images (MRI) of benign breast disease and breast cancer patients. The models include normal breast tissues (fat, fibroglandular, skin, and muscle tissues), and benign and cancerous breast tumors. The repository contains easily reconfigurable models which can be tumor-free or contain single or multiple tumors, allowing complex and realistic test scenarios needed for feasibility and performance assessment of MWI devices prior to experimental and clinical testing. It also includes an executable file which enables researchers to generate models incorporating the dielectric properties of breast tissues at a chosen frequency ranging from 3 to 10 GHz, thereby ensuring compatibility with a wide spectrum of research requirements and stages of development for any breast MWI prototype system. Currently, our dataset comprises MRI scans of 55 patients, but new exams will be continuously added.
Funder
Fundação para a Ciência e a Tecnologia
Publisher
Public Library of Science (PLoS)