Automatic exudate and aneurysm segmentation in OCT images using UNET++ and hyperreflective-foci feature based bagged tree ensemble

Author:

Tanthanathewin Rinrada,Wongrattanapipat Warissaporn,Khaing Tin Tin,Aimmanee PakineeORCID

Abstract

Diabetic retinopathy’s signs, such as exudates (EXs) and aneurysms (ANs), initially develop from under the retinal surface detectable from optical coherence tomography (OCT) images. Detecting these signs helps ophthalmologists diagnose DR sooner. Detecting and segmenting exudates (EXs) and aneurysms (ANs) in medical images is challenging due to their small size, similarity to other hyperreflective regions, noise presence, and low background contrast. Furthermore, the scarcity of public OCT images featuring these abnormalities has limited the number of studies related to the automatic segmentation of EXs and ANs, and the reported performance of such studies has not been satisfactory. This work proposes an efficient algorithm that can automatically segment these anomalies by improving key steps in the process. The potential area where these hyper-reflective EXs and ANs occur was scoped by our method using a deep-learning U-Net++ program. From this area, the candidates for EX-AN were segmented using the adaptive thresholding method. Nine features based on appearances, locations, and shadow markers were extracted from these candidates. They were trained and tested using bagged tree ensemble classifiers to obtain only EX-AN blobs. The proposed method was tested on a collection of a public dataset comprising 80 images with hand-drawn ground truths. The experimental results showed that our method could segment EX-AN blobs with average recall, precision, and F1-measure as 87.9%, 86.1%, and 87.0%, respectively. Its F1-measure drastically outperformed two comparative methods, binary thresholding and watershed (BT-WS) and adaptive thresholding with shadow tracking (AT-ST), by 78.0% and 82.1%, respectively.

Funder

National Research Council of Thailand

Publisher

Public Library of Science (PLoS)

Reference41 articles.

1. Optical coherence tomography;D Huang;Science,1991

2. In vivo retinal imaging by optical coherence tomography;EA Swanson;Optics Letters,1993

3. Optical coherence tomography of the human retina;MR Hee;Archives of Ophthalmology,1995

4. Imaging of macular diseases with optical coherence tomography;CA Puliafito;Ophthalmology,1995

5. Diabetic Retinopathy.;KA Neely;Medical Clinics of North America,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3