Experimental validation and clinical feasibility of 3D reconstruction of coronary artery bifurcation stents using intravascular ultrasound

Author:

Wu Wei,Banga AkshatORCID,Oguz Usama M.,Zhao Shijia,Thota Anjani Kumar,Gadamidi Vinay Kumar,Dasari Vineeth S.,Samant Saurabhi,Watanabe Yusuke,Murasato Yoshinobu,Chatzizisis Yiannis S.ORCID

Abstract

The structural morphology of coronary stents and the local hemodynamic environment following stent deployment in coronary arteries are crucial determinants of procedural success and subsequent clinical outcomes. High-resolution intracoronary imaging has the potential to facilitate geometrically accurate three-dimensional (3D) reconstruction of coronary stents. This work presents an innovative algorithm for the 3D reconstruction of coronary artery stents, leveraging intravascular ultrasound (IVUS) and angiography. The accuracy and reproducibility of our method were tested in stented patient-specific silicone models, with micro-computed tomography serving as a reference standard. We also evaluated the clinical feasibility and ability to perform computational fluid dynamics (CFD) studies in a clinically stented coronary bifurcation. Our experimental and clinical studies demonstrated that our proposed algorithm could reproduce the complex 3D stent configuration with a high degree of precision and reproducibility. Moreover, the algorithm was proved clinically feasible in cases with stents deployed in a diseased coronary artery bifurcation, enabling CFD studies to assess the hemodynamic environment. In combination with patient-specific CFD studies, our method can be applied to stenting optimization, training in stenting techniques, and advancements in stent research and development.

Funder

National Institutes of Health

Dr Vincent Miscia Cardiovascular Research Fund

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3