Energy regeneration: A study on dynamic capacitance adjustment technology in piezoelectric shock absorbers for electric vehicles under varied road conditions

Author:

Lin Shih-LinORCID

Abstract

This study investigates the performance of dynamic capacitance regulation technology in electric vehicle piezoelectric shock absorbers for energy recovery under varying road conditions. By simulating a quarter-vehicle suspension system, this paper comprehensively analyzes the energy recovery efficiency of piezoelectric shock absorbers on gravel, speed bumps, and bumpy road conditions, comparing the performance differences between traditional fixed capacitance and dynamic capacitance. The results demonstrate that dynamic capacitance regulation technology can automatically adjust the capacitance value in response to instantaneous voltage changes, thereby enhancing energy recovery efficiency under various road conditions. This technology not only improves the energy conversion efficiency of piezoelectric shock absorbers but also strengthens the system’s adaptability to different vibration frequencies and amplitudes. Further simulation evidence confirms that piezoelectric shock absorbers, under dynamic capacitance regulation, achieve better energy recovery performance across diverse road conditions, offering new insights into improving the energy efficiency and sustainability of electric vehicles. The novelty of this research lies in the first application of dynamic capacitance regulation technology to the energy recovery system of electric vehicle piezoelectric shock absorbers, providing a new theoretical foundation and technical reference for optimizing electric vehicle energy recovery systems.

Funder

Ministry of Science and Technology, Taiwan

Ministry of Education’s Teaching Practice Research Program, Taiwan

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3