Optimal image quality and radiation doses with optimal tube voltages/currents for pediatric anthropomorphic phantom brains

Author:

Chen Li-GuoORCID,Kao Hung-Wen,Wu Ping-An,Sheu Ming-Huei,Huang Li-ChuanORCID

Abstract

Objective Using pediatric anthropomorphic phantoms (APs), we aimed to determine the scanning tube voltage/current combinations that could achieve optimal image quality and avoid excessive radiation exposure in pediatric patients. Materials and methods A 64-slice scanner was used to scan a standard test phantom to determine the volume CT dose indices (CTDIvol), and three pediatric anthropomorphic phantoms (APs) with highly accurate anatomy and tissue-equivalent materials were studied. These specialized APs represented the average 1-year-old, 5-year-old, and 10-year-old children, respectively. The physical phantoms were constructed with brain tissue-equivalent materials having a density of ρ = 1.07 g/cm3, comprising 22 numbered 2.54-cm-thick sections for the 1-year-old, 26 sections for the 5-year-old, and 32 sections for the 10-year-old. They were scanned to acquire brain CT images and determine the standard deviations (SDs), effective doses (EDs), and contrast-to noise ratios (CNRs). The APs were scanned by 21 combinations of tube voltages/currents (80, 100, or 120 kVp/10, 40, 80, 120, 150, 200, or 250 mA) and rotation time/pitch settings of 1 s/0.984:1. Results The optimal tube voltage/current combinations yielding optimal image quality were 80 kVp/80 mA for the 1-year-old AP; 80 kVp/120 mA for the 5-year-old AP; and 80 kVp/150 mA for the 10-year-old AP. Because these scanning tube voltages/currents yielded SDs, respectively, of 12.81, 13.09, and 12.26 HU, along with small EDs of 0.31, 0.34, and 0.31 mSv, these parameters and the induced values were expediently defined as optimal. Conclusions The optimal tube voltages/currents that yielded optimal brain image quality, SDs, CNRs, and EDs herein are novel and essentially important. Clinical translation of these optimal values may allow CT diagnosis with low radiation doses to children’s heads.

Publisher

Public Library of Science (PLoS)

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3