Anomaly detection in multivariate time series data using deep ensemble models

Author:

Iqbal AmjadORCID,Amin RashidORCID,Alsubaei Faisal S.,Alzahrani Abdulrahman

Abstract

Anomaly detection in time series data is essential for fraud detection and intrusion monitoring applications. However, it poses challenges due to data complexity and high dimensionality. Industrial applications struggle to process high-dimensional, complex data streams in real time despite existing solutions. This study introduces deep ensemble models to improve traditional time series analysis and anomaly detection methods. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks effectively handle variable-length sequences and capture long-term relationships. Convolutional Neural Networks (CNNs) are also investigated, especially for univariate or multivariate time series forecasting. The Transformer, an architecture based on Artificial Neural Networks (ANN), has demonstrated promising results in various applications, including time series prediction and anomaly detection. Graph Neural Networks (GNNs) identify time series anomalies by capturing temporal connections and interdependencies between periods, leveraging the underlying graph structure of time series data. A novel feature selection approach is proposed to address challenges posed by high-dimensional data, improving anomaly detection by selecting different or more critical features from the data. This approach outperforms previous techniques in several aspects. Overall, this research introduces state-of-the-art algorithms for anomaly detection in time series data, offering advancements in real-time processing and decision-making across various industrial sectors.

Publisher

Public Library of Science (PLoS)

Reference47 articles.

1. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects;AE Ezugwu;Engineering Applications of Artificial Intelligence,2022

2. Forecasting: theory and practice.;F Petropoulos;International Journal of Forecasting.,2022

3. A review on time series data mining.;T-c Fu;Engineering Applications of Artificial Intelligence,2011

4. Healthcare and anomaly detection: using machine learning to predict anomalies in heart rate data.;E Šabić;AI & SOCIETY.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3