G0 arrest gene patterns to predict the prognosis and drug sensitivity of patients with lung adenocarcinoma

Author:

Ma Yong,Li Zhilong,Li Dongbing,Zheng Baozhen,Xue YanfengORCID

Abstract

G0 arrest (G0A) is widely recognized as a crucial factor contributing to tumor relapse. The role of genes related to G0A in lung adenocarcinoma (LUAD) was unclear. This study aimed to develop a gene signature based on for LUAD patients and investigate its relationship with prognosis, tumor immune microenvironment, and therapeutic response in LUAD. We use the TCGA-LUAD database as the discovery cohort, focusing specifically on genes associated with the G0A pathway. We used various statistical methods, including Cox and lasso regression, to develop the model. We validated the model using bulk transcriptome and single-cell transcriptome datasets (GSE50081, GSE72094, GSE127465, GSE131907 and EMTAB6149). We used GSEA enrichment and the CIBERSORT algorithm to gain insight into the annotation of the signaling pathway and the characterization of the tumor microenvironment. We evaluated the response to immunotherapy, chemotherapy, and targeted therapy in these patients. The expression of six genes was validated in cell lines by quantitative real-time PCR (qRT-PCR). Our study successfully established a six-gene signature (CHCHD4, DUT, LARP1, PTTG1IP, RBM14, and WBP11) that demonstrated significant predictive power for overall survival in patients with LUAD. It demonstrated independent prognostic value in LUAD. To enhance clinical applicability, we developed a nomogram based on this gene signature, which showed high reliability in predicting patient outcomes. Furthermore, we observed a significant association between G0A-related risk and tumor microenvironment as well as drug susceptibility, highlighting the potential of the gene signature to guide personalized treatment strategies. The expression of six genes were significantly upregulated in the LUAD cell lines. This signature holds the potential to contribute to improved prognostic prediction and new personalized therapies specifically for LUAD patients.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3