Bond performance between hybrid fiber-reinforced concrete and BFRP bars under freeze-thaw cycle

Author:

Su YanmingORCID

Abstract

This study applied the pull-out test to examine the influence of freeze-thaw cycles and hybrid fiber incorporation on the bond performance between BFRP bars and hybrid fiber-reinforced concrete. The bond-slip curves were fitted by the existing bond-slip constitutive model, and then the bond strength was predicted by a BP neural network. The results indicated that the failure mode changed from pull-out to splitting for the BFRP bar ordinary concrete specimens when the freeze-thaw cycles exceeded 50, while only pull-out failure occurred for all BFRP bar hybrid fiber-reinforced concrete specimens. An increasing trend was shown on the peak slip, but a decreasing trend was shown on the bond stiffness and bond strength when freeze-thaw cycles increased. The bond strength could be increased significantly by the incorporation of basalt fiber (BF) and cellulose fiber (CF) under the same freezing and thawing conditions as compared to concrete specimens without fibers. The Malvar model and the Continuous Curve model performed best in fitting the ascending and descending sections of the bond-slip curves, respectively. The BP neural network also accurately predicted the bond strength, with relative errors of predicted bond strengths ranging from 3.75% to 13.7%, and 86% of them being less than 10%.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3