DFMG decreases angiogenesis to uphold plaque stability by inhibiting the TLR4/VEGF pathway in mice

Author:

Bai PingjuanORCID,Xiang Xueping,Kang Jiawen,Xiang Xiaoqing,Jiang Jingwen,Fu Xiaohua,Zhang Yong,Li Lesai

Abstract

The aim of this study was to elucidate the specific mechanism through which 7-difluoromethoxy-5,4’-dimethoxygenistein (DFMG) inhibits angiogenesis in atherosclerosis (AS) plaques, given its previously observed but poorly understood inhibitory effects. In vitro, a model using Human Umbilical Vein Endothelial (HUVEC-12) cells simulated the initial lesion in the atherosclerotic pathological process, specifically oxidative stress injury, by exposing cells to 30 μmol/L LPC. Additionally, an AS mouse model was developed in ApoE knockout mice through a 16-week period of high-fat feeding. DFMG demonstrated a reduction in tubule quantities in the tube formation assay and neovascularization induced by oxidative stress-damaged endothelial cells in the chicken embryo chorioallantoic membrane assay. Furthermore, DFMG decreased lipid levels in the blood of ApoE knockout mice with AS, along with a decrease in atherosclerotic plaques and neovascularizations in the aortic arch and descending aorta of AS animal models. DFMG treatment upregulated microRNA140 (miR-140) expression and suppressed VEGF secretion in HUVEC-12 cells. These effects were counteracted by Toll-like receptor 4 (TLR4) overexpression in HUVEC-12 cells subjected to oxidative injury or in a mouse model of AS. Dual-luciferase reporter assays demonstrated that miR-140 directly targeted TLR4. Immunohistochemical assay findings indicated a significant inverse relationship between miR-140 expression and TLR4 expression in ApoE knockout mice subjected to a high-fat diet. The study observed a close association between DFMG inhibitory effects on angiogenesis and plaque stability in AS, and the inhibition of the TLR4/NF-κB/VEGF signaling pathway, negatively regulated by miR-140.

Funder

Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

Public Library of Science (PLoS)

Reference34 articles.

1. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study;GA Roth;J Am Coll Cardiol,2020

2. Atherosclerosis: Known and unknown.;Jianglin Fan;Pathology international,2022

3. Progress in Cardiovascular Diseases Statistics 2022.;CJ Lavie;Prog Cardiovasc Dis.,2022

4. The changing landscape of atherosclerosis;P. Libby;Nature,2021

5. Atherosclerosis prevention: new therapeutic strategies on the horizon;SA Di Fusco;G Ital Cardiol (Rome).,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3