Using zero-inflated and hurdle regression models to analyze schistosomiasis data of school children in the southern areas of Ghana

Author:

Nketia KojoORCID,de Souza Dziedzom K.ORCID

Abstract

Background Schistosomiasis is a neglected disease prevalent in tropical and sub-tropical areas of the world, especially in Africa. Detecting the presence of the disease is based on the detection of the parasites in the stool or urine of children and adults. In such studies, typically, data collected on schistosomiasis infection includes information on many negative individuals leading to a high zero inflation. Thus, in practice, counts data with excessive zeros are common. However, the purpose of this analysis is to apply statistical models to the count data and evaluate their performance and results. Methods This is a secondary analysis of previously collected data. As part of a modelling process, a comparison of the Poisson regression, negative binomial regression and their associated zero inflated and hurdle models were used to determine which offered the best fit to the count data. Results Overall, 94.1% of the study participants did not have any schistosomiasis eggs out of 1345 people tested, resulting in a high zero inflation. The performance of the negative binomial regression models (hurdle negative binomial (HNB), zero inflated negative binomial (ZINB) and the standard negative binomial) were better than the Poisson-based regression models (Poisson, zero inflated Poisson, hurdle Poisson). The best models were the ZINB and HNB and their performances were indistinguishable according to information-based criteria test values. Conclusion The zero-inflated negative binomial and hurdle negative binomial models were found to be the most satisfactory fit for modelling the over-dispersed zero inflated count data and are recommended for use in future statistical modelling analyses.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3