Efficient implementation of the linear layer of block ciphers with large MDS matrices based on a new lookup table technique

Author:

Luong Tran Thi,Van Long Nguyen,Vo BayORCID

Abstract

Block cipher is a cryptographic field that is now widely applied in various domains. Besides its security, deployment issues, implementation costs, and flexibility across different platforms are also crucial in practice. From an efficiency perspective, the linear layer is often the slowest transformation and requires significant implementation costs in block ciphers. Many current works employ lookup table techniques for linear layers, but they are quite costly and do not save memory storage space for the lookup tables. In this paper, we propose a novel lookup table technique to reduce memory storage when executing software. This technique is applied to the linear layer of block ciphers with recursive Maximum Distance Separable (MDS) matrices, Hadamard MDS matrices, and circulant MDS matrices of considerable sizes (e.g. sizes of 16, 32, 64, and so on). The proposed lookup table technique leverages the recursive property of linear matrices and the similarity in elements of Hadamard or circulant MDS matrices, allowing the construction of a lookup table for a submatrix instead of the entire linear matrix. The proposed lookup table technique enables the execution of the diffusion layer with unchanged computational complexity (number of XOR operations and memory accesses) compared to conventional lookup table implementations but allows a substantial reduction in memory storage for the pre-computed tables, potentially reducing the storage needed by 4 or 8 times or more. The memory storage will be reduced even more as the size of the MDS matrix increases. For instance, analysis shows that when the matrix size is 64, the memory storage ratio with the proposed lookup table technique decreases by 87.5% compared to the conventional lookup table technique. This method also allows for more flexible software implementations of large-sized linear layers across different environments.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3