Atomistic description of the OCTN1 recognition mechanism via in silico methods

Author:

Ben Mariem OmarORCID,Palazzolo Luca,Torre Beatrice,Wei Yao,Bianchi Davide,Guerrini Uliano,Laurenzi Tommaso,Saporiti SimonaORCID,De Fabiani Emma,Pochini Lorena,Indiveri Cesare,Eberini IvanoORCID

Abstract

The Organic Cation Transporter Novel 1 (OCTN1), also known as SLC22A4, is widely expressed in various human tissues, and involved in numerous physiological and pathological processes remains. It facilitates the transport of organic cations, zwitterions, with selectivity for positively charged solutes. Ergothioneine, an antioxidant compound, and acetylcholine (Ach) are among its substrates. Given the lack of experimentally solved structures of this protein, this study aimed at generating a reliable 3D model of OCTN1 to shed light on its substrate-binding preferences and the role of sodium in substrate recognition and transport. A chimeric model was built by grafting the large extracellular loop 1 (EL1) from an AlphaFold-generated model onto a homology model. Molecular dynamics simulations revealed domain-specific mobility, with EL1 exhibiting the highest impact on overall stability. Molecular docking simulations identified cytarabine and verapamil as highest affinity ligands, consistent with their known inhibitory effects on OCTN1. Furthermore, MM/GBSA analysis allowed the categorization of substrates into weak, good, and strong binders, with molecular weight strongly correlating with binding affinity to the recognition site. Key recognition residues, including Tyr211, Glu381, and Arg469, were identified through interaction analysis. Ach demonstrated a low interaction energy, supporting the hypothesis of its one-directional transport towards to outside of the membrane. Regarding the role of sodium, our model suggested the involvement of Glu381 in sodium binding. Molecular dynamics simulations of systems at increasing levels of Na+ concentrations revealed increased sodium occupancy around Glu381, supporting experimental data associating Na+ concentration to molecule transport. In conclusion, this study provides valuable insights into the 3D structure of OCTN1, its substrate-binding preferences, and the role of sodium in the recognition. These findings contribute to the understanding of OCTN1 involvement in various physiological and pathological processes and may have implications for drug development and disease management.

Funder

MUR – Bando PRIN 2022

Università degli Studi di Milano

PRIN 2022

Ministry of University and Research

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3