Improved assembly DC circuit breaker based on resonant current injection

Author:

Cui PuyiORCID,Li Guoli,Zhang Qian,He Qinglian,Chen Zhong,Yang Wei

Abstract

DC circuit breakers (DCCBs) with high breaking capacity and low cost are necessary for quick fault clearance in DC networks. The assembly DC circuit breakers (ADCCBs) have a main breaking section (MBS) and a sub-breaking sections (SBS) for each line, which greatly reduce the cost. But in conventional operation, it bears high voltage for a long time when there is a main switch grounding process in any line fault action. To address this problem, a multiport assembly circuit breaker based on current injection (CI-MPACB) is proposed, which is able to generate a resonant current with increasing amplitude by controlling the duty cycle of Integrated Gate-Commutated Thyristors (IGCTs). Then the resonant current is injected into the SBS to generate current zero crossing and arc extinction. A complex frequency domain circuit analysis is performed on the MBS to describe the action logic as well as the commutation characteristics. In addition, the parameters of each component of the MBS are subject to multiple constraints and reasonable design to ensure the fault current could be cut off quickly and reliably. The cost of existing design is greatly reduced due to the design idea of resonant current injection device parameter selection. Finally, a PSCAD/EMTDC simulation confirms the opening viability of CI-MPACB and the accuracy of the parameter design. The test results show that the designed CI-MPACB can cut off DC fault lines.

Funder

State Grid Corporation Headquarters Science and Technology Project

Publisher

Public Library of Science (PLoS)

Reference36 articles.

1. Multi-terminal HVDC and DC-grid technology;G. Tang;Proceedings of the CSEE,2013

2. Research on coordination strategy for an offshore wind power DC chopper device and protection[J];Fu Yan;Power System Protection and Control,2021

3. Seriesconnected-based offshore wind farms with full-bridge modular multilevel converter as grid- and generatorside converters[J];Guo Gaopeng;IEEE Transactions on Industrial

4. A mediumfrequency transformer-based wind energy conversion system used for current-source converter-based offshore wind farm[J];Wei Qiang;IEEE Transactions on Power Electronics,2017

5. Analysis on transient characteristics of short-circuit current for bipolar VSC-based DC grid;X. Pei;Journal of Global Energy Interconnection,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3