Compromised heat loss leads to a delayed ice slurry induced reduction in heat storage

Author:

O’Brien Thomas J.ORCID,Goosey-Tolfrey Victoria L.,Leicht Christof A.ORCID

Abstract

Compromised heat loss due to limited convection and evaporation can increase thermal strain. We aimed to determine the effectiveness of ice slurry ingestion to reduce thermal strain following hyperthermia in a state of compromised heat loss. Twelve healthy males (age: 25 ± 4y) underwent hot water immersion to elevate rectal temperature (Trec) by 1.82 ± 0.08°C on four occasions. In the subsequent 60-min of seated recovery, participants ingested either 6.8 g·kg-1 of ice slurry (-0.6°C) or control drink (37°C) in ambient conditions (21 ± 1°C, 39 ± 10% relative humidity), wearing either t-shirt and shorts (2 trials: ICE and CON) or a whole-body sweat suit (2 trials: ICE-SS and CON-SS). Trec and mean skin temperature (Tsk) were recorded and a two-compartment thermometry model of heat storage was calculated. Heat storage was lower in ICE compared with CON at 20-40min (p ≤ 0.044, d ≥ 0.88) and for ICE-SS compared with CON-SS at 40–60 min (p ≤ 0.012, d ≥ 0.93). Trec was lower in ICE compared with CON from 30-60min (p ≤ 0.034, d ≥ 0.65), with a trend for a reduced Trec in ICE-SS compared with CON-SS at 40min (p = 0.079, d = 0.60). A greater Tsk was found in ICE-SS and CON-SS compared with ICE and CON (p < 0.001, d ≥ 3.37). A trend for a lower Tsk for ICE compared with CON was found at 20-40min (p ≤ 0.099, d ≥ 0.53), no differences were found for ICE-SS vs CON-SS (p ≥ 0.554, d ≤ 0.43). Ice slurry ingestion can effectively reduce heat storage when heat loss through convection and evaporation is compromised, relevant to those wearing personal protective equipment or those with compromised sweat loss. Compromised heat loss delays the reduction in heat storage, possibly related to ice slurry ingestion not lowering Tsk.

Funder

Peter Harrison Centre for Disability Sport

Publisher

Public Library of Science (PLoS)

Reference34 articles.

1. Effects of heat stress on physiological responses and exercise performance in elite cyclists.;AJ Tatterson;J Sci Med Sport,2000

2. Heat strain is reduced at different rates with hand, foot, forearm or lower leg cooling.;JR House;Elsevier Ergon B Ser,2005

3. Circadian aspects of body temperature regulation in exercise;T Reilly;Journal of Thermal Biology,2009

4. Attenuated skin blood flow response to hyperthermia in paraplegic men;PR Freund;J Appl Physiol Respir Environ Exerc Physiol,1984

5. Circulatory responses during arm exercise in individuals with paraplegia.;MTE Hopman;Int J Sports Med,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3