PIK-III exerts anti-fibrotic effects in activated fibroblasts by regulating p38 activation

Author:

Sanchez Santiago,McDowell-Sanchez Aaron K.,Al-Meerani Sharaz B.,Cala-Garcia Juan D.,Waich Cohen Alan R.,Ochsner Scott A.,McKenna Neil J.,Celada Lindsay J.,Wu Minghua,Assassi ShervinORCID,Rosas Ivan O.,Tsoyi KonstantinORCID

Abstract

Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune-driven connective tissue disorder that results in fibrosis of the skin and internal organs such as the lung. Fibroblasts are known as the main effector cells involved in the progression of SSc through the induction of extracellular matrix (ECM) proteins and myofibroblast differentiation. Here, we demonstrate that 4’-(cyclopropylmethyl)-N2-4-pyridinyl-[4,5’-bipyrimidine]-2,2’-diamine (PIK-III), known as class III phosphatidylinositol 3-kinase (PIK3C3/VPS34) inhibitor, exerts potent antifibrotic effects in human dermal fibroblasts (HDFs) by attenuating transforming growth factor-beta 1 (TGF-β1)-induced ECM expression, cell contraction and myofibroblast differentiation. Unexpectedly, neither genetic silencing of PIK3C3 nor other PIK3C3 inhibitors (e.g., SAR405 and Autophinib) were able to mimic PIK-III-mediated antifibrotic effect in dermal fibroblasts, suggesting that PIK-III inhibits fibroblast activation through another signaling pathway. We identified that PIK-III effectively inhibits p38 activation in TGF-β1-stimulated dermal fibroblasts. Finally, PIK-III administration significantly attenuated dermal and lung fibrosis in bleomycin-injured mice.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

U.S. Department of Defense

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3