Surface roughness and cyclic fatigue resistance of a novel shaping system: An in-vitro study

Author:

Özel Beliz,Barut Güher,Baser Can Elif DelveORCID

Abstract

Recently developed Nickel-Titanium (NiTi) instruments with practical changes have resulted in safer instrumentation. In addition, topographical features on the file surface are a contributing factor to clinical durability. Therefore, this study aimed to investigate both the cyclic fatigue resistance and the roughness change of MTwo and Rotate instruments (VDW, Munich, Germany). Each instrument (n = 6/each group) was scanned with an atomic force microscopy prior to and after instrumentation. In addition, cyclic fatigue testing was conducted for each instrument (n = 11/each group) with stainless-steel blocks, including 45°-60°-90° degrees of curvature milled to the instruments’ size. The roughness parameters increased for both systems after instrumentation (p<0.05). Both systems presented an increased roughness following instrumentation (p<0.05). The cyclic fatigue resistance was lowest at 90° for both systems (p<0.05), whereas the Rotate files presented a higher resistance than that of the Mtwo files (p<0.05). Compared to the Mtwo files, Rotate files presented better resistance, while the resistance decreased as the curvature increased.

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3