Effect of edaphoclimate on the resin glycoside profile of the ruderal Ipomoea parasitica (Convolvulaceae)

Author:

Pérez-Sanvicente Edmi,León-Rivera Ismael,Cardoso-Taketa Alexandre T.,Perea-Arango Irene de la C.,Mussali-Galante Patricia,Valencia-Díaz SusanaORCID

Abstract

The latex of Ipomoea (Convolvulaceae) is a source of a special kind of acylsugars called resin glycosides, which are highly appreciated because of their biological activities (i.e. laxative, antimicrobial, cytotoxic etc.). Most research has been conducted in perennials with tuberous roots, where resin glycosides are stored. However, their content and variation are unknown in annual vines that lack this type of root, such as in the case of Ipomoea parasitica. This species contains research/biological and human value through its fast growth, survival in harsh environments, and employment in humans for mental/cognitive improvements. These qualities make I. parasitica an ideal system to profile resin glycosides and their variations in response to edaphoclimate. Topsoil samples (0–30 cm depth) and latex from petioles of I. parasitica were collected in two localities of central Mexico. The latex was analyzed through UHPLC-ESI-QTOF, and soil physico-chemical characteristics, the rainfall, minimum, average, and maximum temperatures were recorded. We also measured canopy (%), rockiness (%), and plant cover (%). A Principal Component Analysis was conducted to find associations between edaphoclimate and the resin glycosides. Forty-four resin glycosides were found in the latex of I. parasitica. Ten correlated significantly with three components (47.07%) and contained tetrasaccharide, pentasaccharide, and dimers of tetrasaccharide units. Five resin glycosides were considered constitutive because they were in all the plants. However, exclusive molecules to each locality were also present, which we hypothesize is in response to significant microhabitat conditions found in this study (temperature, clay content, pH, and potassium). Our results showed the presence of resin glycosides in I. parasitica latex and are the basis for experimentally testing the effect of the conditions above on these molecules. However, ecological, molecular, and biochemical factors should be considered in experiments designed to produce these complex molecules.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3