Stone decision engine accurately predicts stone removal and treatment complications for shock wave lithotripsy and laser ureterorenoscopy patients

Author:

Noble Peter A.ORCID,Hamilton Blake D.,Gerber Glenn

Abstract

Kidney stones form when mineral salts crystallize in the urinary tract. While most stones exit the body in the urine stream, some can block the ureteropelvic junction or ureters, leading to severe lower back pain, blood in the urine, vomiting, and painful urination. Imaging technologies, such as X-rays or ureterorenoscopy (URS), are typically used to detect kidney stones. Subsequently, these stones are fragmented into smaller pieces using shock wave lithotripsy (SWL) or laser URS. Both treatments yield subtly different patient outcomes. To predict successful stone removal and complication outcomes, Artificial Neural Network models were trained on 15,126 SWL and 2,116 URS patient records. These records include patient metrics like Body Mass Index and age, as well as treatment outcomes obtained using various medical instruments and healthcare professionals. Due to the low number of outcome failures in the data (e.g., treatment complications), Nearest Neighbor and Synthetic Minority Oversampling Technique (SMOTE) models were implemented to improve prediction accuracies. To reduce noise in the predictions, ensemble modeling was employed. The average prediction accuracies based on Confusion Matrices for SWL stone removal and treatment complications were 84.8% and 95.0%, respectively, while those for URS were 89.0% and 92.2%, respectively. The average prediction accuracies for SWL based on Area-Under-the-Curve were 74.7% and 62.9%, respectively, while those for URS were 77.2% and 78.9%, respectively. Taken together, the approach yielded moderate to high accurate predictions, regardless of treatment or outcome. These models were incorporated into a Stone Decision Engine web application (http://peteranoble.com/webapps.html) that suggests the best interventions to healthcare providers based on individual patient metrics.

Publisher

Public Library of Science (PLoS)

Reference73 articles.

1. Kidney stones: a global picture of prevalence, incidence, and associated risk factors;V Romero;Rev Urol,2010

2. Prevalence of kidney stones in the United States;CD Scales;Eur Urol,2012

3. Urinary Stone Disease: Advancing Knowledge, Patient Care, and Population Health;CD Scales;Clin J Am Soc Nephrol,2016

4. Urinary Stones and Intervention Quality of Life (USIQoL): Development and Validation of a New Core Universal Patient-reported Outcome Measure for Urinary Calculi;HB Joshi;Eur Urol Focus,2021

5. Nephrolithiasis in elderly population; effect of demographic characteristics;E Moudi;J Nephropathol,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3