Creating and validating the Fine-Grained Question Subjectivity Dataset (FQSD): A new benchmark for enhanced automatic subjective question answering systems

Author:

Babaali MarziehORCID,Fatemi AfsanehORCID,Nematbakhsh Mohammad Ali

Abstract

In the domain of question subjectivity classification, there exists a need for detailed datasets that can foster advancements in Automatic Subjective Question Answering (ASQA) systems. Addressing the prevailing research gaps, this paper introduces the Fine-Grained Question Subjectivity Dataset (FQSD), which comprises 10,000 questions. The dataset distinguishes between subjective and objective questions and offers additional categorizations such as Subjective-types (Target, Attitude, Reason, Yes/No, None) and Comparison-form (Single, Comparative). Annotation reliability was confirmed via robust evaluation techniques, yielding a Fleiss’s Kappa score of 0.76 and Pearson correlation values up to 0.80 among three annotators. We benchmarked FQSD against existing datasets such as (Yu, Zha, and Chua 2012), SubjQA (Bjerva 2020), and ConvEx-DS (Hernandez-Bocanegra 2021). Our dataset excelled in scale, linguistic diversity, and syntactic complexity, establishing a new standard for future research. We employed visual methodologies to provide a nuanced understanding of the dataset and its classes. Utilizing transformer-based models like BERT, XLNET, and RoBERTa for validation, RoBERTa achieved an outstanding F1-score of 97%, confirming the dataset’s efficacy for the advanced subjectivity classification task. Furthermore, we utilized Local Interpretable Model-agnostic Explanations (LIME) to elucidate model decision-making, ensuring transparent and reliable model predictions in subjectivity classification tasks.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3