Development and web deployment of prediction model for pulmonary arterial pressure in chronic thromboembolic pulmonary hypertension using machine learning

Author:

Matsunaga Takaaki,Kono Atsushi,Nishio MizuhoORCID,Yoshii Takahiro,Matsuo Hidetoshi,Takahashi Mai,Takahashi Takuya,Taniguchi Yu,Tanaka Hidekazu,Hirata Kenichi,Murakami Takamichi

Abstract

Background and purpose Mean pulmonary artery pressure (mPAP) is a key index for chronic thromboembolic pulmonary hypertension (CTEPH). Using machine learning, we attempted to construct an accurate prediction model for mPAP in patients with CTEPH. Methods A total of 136 patients diagnosed with CTEPH were included, for whom mPAP was measured. The following patient data were used as explanatory variables in the model: basic patient information (age and sex), blood tests (brain natriuretic peptide (BNP)), echocardiography (tricuspid valve pressure gradient (TRPG)), and chest radiography (cardiothoracic ratio (CTR), right second arc ratio, and presence of avascular area). Seven machine learning methods including linear regression were used for the multivariable prediction models. Additionally, prediction models were constructed using the AutoML software. Among the 136 patients, 2/3 and 1/3 were used as training and validation sets, respectively. The average of R squared was obtained from 10 different data splittings of the training and validation sets. Results The optimal machine learning model was linear regression (averaged R squared, 0.360). The optimal combination of explanatory variables with linear regression was age, BNP level, TRPG level, and CTR (averaged R squared, 0.388). The R squared of the optimal multivariable linear regression model was higher than that of the univariable linear regression model with only TRPG. Conclusion We constructed a more accurate prediction model for mPAP in patients with CTEPH than a model of TRPG only. The prediction performance of our model was improved by selecting the optimal machine learning method and combination of explanatory variables.

Funder

JSPS

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3