Analysis of the effect of motion on highly accelerated 3D FatNavs in 3D brain images acquired at 3T

Author:

Marchetto ElisaORCID,Gallichan Daniel

Abstract

Purpose 3D FatNavs are rapid acquisitions of MRI fat-volumes within the head that can be used for retrospective motion correction for brain MRI. 3D FatNavs typically use very high acceleration factors and are reconstructed with the GRAPPA parallel imaging technique. However, the GRAPPA reconstruction is not expected to perform well on 3D FatNavs volumes in the presence of strong motion due to the mismatched calibration data acquired once at the start of the scan, leading to motion-parameter misestimation. This study aims to assess the accuracy and precision of 3D FatNav-derived motion-estimates in the presence of large changes in head position. Methods Rigid motion parameters were simulated and applied retrospectively to the 3D FatNav volumes from MPRAGE datasets acquired at 3T. The transformed images were then re-reconstructed using GRAPPA to simulate real motion deterioration of the fat-navigator, and used to estimate the motion applied and evaluate the tracking inaccuracy. This information was then used to estimate the residual motion after 3D FatNav-based motion correction and applied to the original MPRAGE volumes. The effect of the misestimation was assessed using an image quality metric and the evaluation scores from two observers. Quality boundaries were then estimated to assess the motion tolerance when 3D FatNavs are used. Results The GRAPPA reconstruction was shown to deteriorate for large changes in the head position, affecting the quality of 3D FatNav volumes and consequently degrading the accuracy of the motion-estimates. Based on our simulations, the estimated threshold of motion that led to a noticeable degradation in the MPRAGE image quality was up to RMS values of 3.7° and 3 mm for rotations and translations respectively. Conclusions 3D FatNavs were shown to be able to correct for a wide range of motion levels and types. Boundaries of acceptable motion magnitudes for different levels of acceptable loss of image quality were determined.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3