Chicken swarm optimization modelling for cognitive radio networks using deep belief network-enabled spectrum sensing technique

Author:

M. SaraswathiORCID,E. Logashanmugam

Abstract

Cognitive radio networks (CRN) enable wireless devices to sense the radio spectrum, determine the frequency state channels, and reconfigure the communication variables to satisfy Quality of Service (QoS) needs by reducing energy utilization. In CRN, spectrum sensing is an essential process that is highly challenging and can be addressed by several traditional techniques, such as energy detection, match filtering, etc. For now, the current models’ performance is impacted by the comparatively low Signal to Noise Ratio (SNR) of recognized signals and the insignificant quantity of traditional signal samples. This research proposals a new spectral sensing technique for cognitive radio networks (SST-CRN) that addresses the drawbacks of predictable energy detection models. With the use of a deep belief network (DBN), the suggested model contributes to accomplish a nonlinear threshold based on the chicken swarm algorithm (CSA). The proposed DBN enabled SST-CRN technique goes through two phases in a organized process: offline and online. Throughout the offline phase, the DBN model is methodically trained on pre-gathered data, developing the aptitude to identify problematic patterns and examples from the spectral features of the radio environment. This stage involves extensive feature extraction, validation, and model development to ensure that the DBN can professionally represent complicated spectral dynamics. Additionally, online spectrum sensing is conducted during the real communication phase to enable real-time adaptation to dynamic changes in the spectrum environment. Offline spectrum sensing is typically performed during a devoted sensing period before actual communication begins. When combined with DBN’s deep learning capabilities and CSO’s innate nature-inspired algorithms, a synergistic framework is created that enables CRNs to explore and allocate incidences on their own with astonishing accuracy. The proposed solution considerably improves the spectrum efficiency and resilience of CRNs by harnessing the power of DBN, which leads to more effective resource utilization and less interference. The Simulation results show that our proposed strategy produces more accurate spectrum occupancy assessments. The result parameters such as probability of detection, SNR of -24dB, the SST-CRN perfect has increased a developed Pd of 0.810, whereas the existing methods RMLSSCRN-100 and RMLSSCRN-300 have accomplished a lower Pd of 0.577 and 0.736, respectively. Our deep learning methodology uses convolutional neural networks to automatically learn and adapt to dynamic and complicated radio environments, improving accuracy and flexibility over classic spectrum sensing approaches. Future research might focus on improving CSO algorithms to better optimize the spectrum sensing process, enhancing the reliability of DBN-enabled sensing techniques.

Publisher

Public Library of Science (PLoS)

Reference28 articles.

1. A comprehensive survey on spectrum sensing in cognitive radio networks: Recent advances, new challenges, and future research directions.;Y Arjoune;Sensors,2019

2. Cognitive radio for M2M and Internet of Things: A survey;P Rawat;Computer Communications,2016

3. An efficient cache consistency scheme in mobile networks.;T Priyadharshini;Wireless Communication,2011

4. An automated exploring and learning model for data prediction using balanced CA-SVM;S Neelakandan;Journal of Ambient Intelligence and Humanized Computing,2021

5. Wideband spectrum sensing based on riemannian distance for cognitive radio networks.;Q Lu;Sensors,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3