Suppression of Ehrlich ascites tumor cell proliferation via G1 arrest induced by dietary nucleic acid-derived nucleosides

Author:

Shiomi Nahoko,Furuta Mamia,Sasaki Yutaro,Matsui-Yuasa Isao,Kiriyama Keisuke,Fujita Mica,Sutoh KeitaORCID,Kojima-Yuasa AkikoORCID

Abstract

The nucleic acids found in food play a crucial role in maintaining various bodily functions. This study investigated the potential anticancer effects of dietary nucleic acids, an area that is still not fully understood. By utilizing an in vivo mouse model and an in vitro cell model, we discovered an anti-proliferative impact of RNA in both systems. DNA exhibited anti-proliferative effects in the mouse model, while this phenomenon wasn’t observed in the in vitro cell model using Ehrlich ascites tumor (EAT) cells. Conversely, DNA hydrolysate demonstrated distinct anti-proliferative effects in EAT cells, suggesting that nucleotides or nucleosides generated during nucleic acid digestion act as active constituents. Furthermore, we examined various nucleosides and two sodium-independent equilibrative nucleoside transporter inhibitors (ENTs), identifying guanosine and 2’-deoxyguanosine as pivotal in the anti-proliferative effect. We also found that the anti-proliferation activity with both nucleosides was suppressed by the treatment of dipyridamole, a non-selective inhibitor for ENT1 and ENT2, but not nitrobenzylthioinosine, a low inhibitor for ENT2. The uptake of these compounds into cells is likely facilitated by ENT2. These nucleotides impeded the progression of cancer cells from the G1 phase to the S phase in the cell cycle. Another significant finding is the increased expression of CCAAT/enhancer-binding protein (C/EBPβ) induced by guanosine and 2’-deoxyguanosine. Furthermore, immunostaining revealed that C/EBPβ diffuses into the nucleus, indicating its presence. This suggests that guanosine or 2-deoxyguanosine induces G1 arrest in cancer cells via the activation of C/EBPβ. Encouraged by these promising results, guanosine and 2’-deoxyguanosine show potential applications in cancer prevention.

Funder

JSPS KAKENHI

Fordays Co., Ltd

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3