Distinct gut flora profile induced by postnatal trans-fat diet in gestationally bisphenol A-exposed rats

Author:

Zulkifli Sarah,Mohd Nor Noor ShafinaORCID,Sheikh Abdul Kadir Siti Hamimah,Mohd Ranai Norashikin,Abdul Khalil Khalilah

Abstract

There has been much evidence showing the repercussions of prenatal bisphenol A (BPA) exposure with a postnatal high fat-diet (HFD) on offspring’s health. However, the information on how the interaction between these two variables affects the gut microbiome is rather limited. Hence, we investigated the impact of a postnatal trans fat diet (TFD) on the gut microbiome of offspring exposed to BPA during the prenatal period in an animal model. Pregnant rats were divided into 5 mg/kg/day BPA, vehicle Tween80 (P80) or control (CTL) drinking water until delivery (N = 6 per group). Then, weaned male pups were further subdivided into three normal diet (ND) groups (CTLND, P80ND, and BPAND) and three TFD groups (CTLTFD, P80TFD, and BPATFD) (n = 6 per group). 180–250 g of faecal samples were collected on days 50 and 100 to assess the composition of the offspring’s intestinal flora using next-generation sequencing. The alpha diversity indices of TFD offspring with and without BPA were markedly lower than their ND counterparts (p<0.001–p<0.05). The beta diversity, hierarchical cluster and network analyses of the offspring’s microbiome demonstrated that the microbiome species of the TFD group with and without BPA were distinctly different compared to the ND group. Consistently, TFD and ND offspring pairings exhibited a higher number of significantly different species (p<0.0001–p<0.05) compared to those exposed to prenatal BPA exposure and different life stages comparisons, as shown by the multivariate parametric analysis DESeq2. Predictive functional profiling of the offspring’s intestinal flora demonstrated altered expressions of genes involved in metabolic pathways. In summary, the gut flora composition of the rat offspring may be influenced by postnatal diet instead of prenatal exposure to BPA. Our data indicate the possibility of perturbed metabolic functions and epigenetic modifications, in offspring that consumed TFD, which may theoretically lead to metabolic diseases in middle or late adulthood. Further investigation is necessary to fully understand these implications.

Funder

Ministry of Higher Education Malaysia

Publisher

Public Library of Science (PLoS)

Reference105 articles.

1. Human exposure to bisphenol A through dietary sources and development of diabetes mellitus: a cross-sectional study in Pakistani population;MEU Haq;Environ Sci Pollut Res Int,2020

2. Bisphenol A and its effects on the systemic organs of children;S Zulkifli;Eur J Pediatr,2021

3. Trans fat: What physicians should know;V. Marchand;Paediatr Child Health,2010

4. Potential of trans fats policies to reduce socioeconomic inequalities in mortality from coronary heart disease in England: cost effectiveness modelling study;K Allen;BMJ,2015

5. Comparison of high and low trans-fatty acid consumers: analyses of UK National Diet and Nutrition Surveys before and after product reformulation;J Hutchinson;Public Health Nutr,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3