Thermostabilization of a fungal laccase by entrapment in enzymatically synthesized levan nanoparticles

Author:

Alishah Aratboni Hossein,Martinez Maura,Olvera Clarita,Ayala Marcela

Abstract

In this work, we present a comprehensive investigation of the entrapment of laccase, a biotechnologically relevant enzyme, into levan-based nanoparticles (LNPs). The entrapment of laccase was achieved concomitantly with the synthesis of LNP, catalyzed by a truncated version of a levansucrase from Leuconostoc mesenteroides. The study aimed to obtain a biocompatible nanomaterial, able to entrap functional laccase, and characterize its physicochemical, kinetic and thermal stability properties. The experimental findings demonstrated that a colloidal stable solution of spherically shaped LNP, with an average diameter of 68 nm, was obtained. An uniform particle size distribution was observed, according to the polydispersity index determined by DLS. When the LNPs synthesis was performed in the presence of laccase, biocatalytically active nanoparticles with a 1.25-fold larger diameter (85 nm) were obtained, and a maximum load of 243 μg laccase per g of nanoparticle was achieved. The catalytic efficiency was 972 and 103 (μM·min)-1, respectively, for free and entrapped laccase. A decrease in kcat values (from 7050 min-1 to 1823 min-1) and an increase in apparent Km (from 7.25 μM to 17.73 μM) was observed for entrapped laccase, compared to the free enzyme. The entrapped laccase exhibited improved thermal stability, retaining 40% activity after 1 h-incubation at 70°C, compared to complete inactivation of free laccase under the same conditions, thereby highlighting the potential of LNPs in preserving enzyme activity under elevated temperatures. The outcomes of this investigation significantly contribute to the field of nanobiotechnology by expanding the applications of laccase and presenting an innovative strategy for enhancing enzyme stability through the utilization of fructan-based nanoparticle entrapments.

Funder

UNAM Posdoctoral Program

Universidad Nacional Autónoma de México

Publisher

Public Library of Science (PLoS)

Reference65 articles.

1. Genomic analysis uncovers laccase-coding genes and biosynthetic gene clusters encoding antimicrobial compounds in laccase-producing Acinetobacter baumannii;R Pooalai;Scientific Reports,2022

2. Laccases: structure, function, and potential application in water bioremediation;L Arregui;Microbial Cell Factories,2019

3. Laccase: The Blue Copper Oxidase;D Thomas;Soil Bioremediation: An Approach Towards Sustainable Technology,2021

4. Laccases—properties and applications;CS Nunes;Enzymes in human and animal nutrition: Elsevier,2018

5. Laccase: Various types and applications;SH Khatami;Biotechnology and Applied Biochemistry,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3