Mapping heavy mineral deposits on the coast of the state of Rio Grande do Sul (Brazil) using orbital and proximal remote sensing

Author:

Prates Hallal Gabriel,de Almeida Espinoza Jean Marcel,Veettil Bijeesh KozhikkodanORCID,Porcher Carla Cristine,Oliveira Righi da Silva MaurícioORCID,Beatriz Alves Rolim Silvia

Abstract

Heavy mineral deposits occur in several coastal areas of the world, formed over a long period due to variations in mean sea level, wave action, and winds. These are the main sources of ilmenite (FeTiO3), which in turn is the source of more than 80% of the TiO2 produced and applied in various industries, most recently in nanotechnology. The present study mapped heavy mineral deposits on the coast of Rio Grande do Sul in southern Brazil using integrated proximal and orbital thermal infrared (TIR) remote sensing techniques. Mineral groups, such as oxides and silicates, have spectral features in the TIR wavelengths. Using laboratory spectroscopy at TIR using Nicolet 6700 Thermo Scientific Spectrometer, we measured the spectral signature of the local sample of heavy minerals (between 8 and 14 μm) and identified a diagnostic spectral feature at 10.75 μm. The signature was resampled to be compatible with the Advanced Spaceborne Thermal Emission Radiometer (ASTER) sensor bandwidth values and used as a reference endmember for the Spectral Angle Mapper (SAM) and Linear Spectral Unmixing (LSU) digital image classification algorithms. Thus, we identified the presence of the reference endmember (heavy minerals) in the pixels of the ASTER scene. In pixels classified by SAM as the presence of heavy minerals, LSU was applied to estimate the surface concentration within the pixel. The results showed a concentration of up to 20% of heavy minerals, with the highest concentration on the beach and dune fields. Opaque minerals such as ilmenite do not have spectral reflectance features in visible, near-infrared, and short-wave infrared, which makes their identification by remote sensing difficult. The present study showed that the integration of proximal and orbital as well as hyperspectral and multispectral thermal data can be considered as an alternative for detecting and mapping heavy minerals in coastal areas.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Public Library of Science (PLoS)

Reference90 articles.

1. Methods of Extracting TiO2 and Other Related Compounds from Ilmenite;AJ Sampath;Minerals,1990

2. WIPO (2022) Production of titanium and titanium dioxide from ilmenite and related applications. Geneva: World Intellectual Property Organization. 2022.

3. Heavy minerals identification and extraction along coastal sediments using placer mining technique;MT Ahmed;Journal of Sedimentary Environments,2023

4. An integrated strategy for the exploration of palaeofluvial placer deposits;S Dhinesh;Applied Geomatics,2021

5. Global distribution, genesis, exploitation, applications, production, and demand of industrial heavy minerals;CS Subasinghe;Arab J Geosci,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3