Federated learning inspired Antlion based orchestration for Edge computing environment

Author:

H. S. MadhusudhanORCID,Gupta PunitORCID

Abstract

Edge computing is a scalable, modern, and distributed computing architecture that brings computational workloads closer to smart gateways or Edge devices. This computing model delivers IoT (Internet of Things) computations and processes the IoT requests from the Edge of the network. In a diverse and independent environment like Fog-Edge, resource management is a critical issue. Hence, scheduling is a vital process to enhance efficiency and allocation of resources properly to the tasks. The manuscript proposes an Artificial Neural Network (ANN) inspired Antlion algorithm for task orchestration Edge environments. Its aim is to enhance resource utilization and reduce energy consumption. Comparative analysis with different algorithms shows that the proposed algorithm balances the load on the Edge layer, which results in lower load on the cloud, improves power consumption, CPU utilization, network utilization, and reduces average waiting time for requests. The proposed model is tested for healthcare application in Edge computing environment. The evaluation shows that the proposed algorithm outperforms existing fuzzy logic algorithms. The performance of the ANN inspired Antlion based orchestration approach is evaluated using performance metrics, power consumption, CPU utilization, network utilization, and average waiting time for requests respectively. It outperforms the existing fuzzy logic, round robin algorithm. The proposed technique achieves an average cloud energy consumption improvement of 95.94%, and average Edge energy consumption improvement of 16.79%, 19.85% in average CPU utilization in Edge computing environment, 10.64% in average CPU utilization in cloud environment, and 23.33% in average network utilization, and the average waiting time decreases by 96% compared to fuzzy logic and 1.4% compared to round-robin respectively.

Publisher

Public Library of Science (PLoS)

Reference29 articles.

1. Survey of Fog computing: fundamental network applications and research challenges;M Mukherjee;IEEE Commun Surv Tutor,2018

2. Managing Fog networks using reinforcement learning based load balancing algorithm;J Baek;In: IEEE wireless communications and networking conference (WCNC),,2019

3. Fog computing: the cloud-IoT/IoE middleware paradigm;M Aazam;IEEE Potentials,2016

4. A distributed mobile Fog computing scheme for mobile delay-sensitive applications in SDN-enabled vehicular networks;C Lin;IEEE TransVeh Technol,2020

5. Acooperative-basedmodel for smart-sensing tasks in Fog computing;T. Li;IEEE Access,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3